DOI: http://dx.doi.org/10.18782/2320-7051.6147

**ISSN: 2320 – 7051** *Int. J. Pure App. Biosci.* **6** (1): 44-51 (2018)





Research Article

# Evaluation and Comparison of Hematocrit, Hemoglobin and Iron Rate in Maternello-Placento-Fœtal Goats Complex at Lubumbashi in Tropical Area

Tshiasuma K. A.<sup>1</sup>, Kasereka S. B.<sup>2</sup>, Kaluendi C. M.<sup>3</sup> and Ngoie K.<sup>4</sup>

<sup>1</sup>Service of General Biology, Nature Conservation and Wild Fauna, <sup>2</sup>Service of Anatomo-Pathology and Autopsy, <sup>3</sup>Service of Normal and Pathological Biochemistry, <sup>4</sup>Service of Physiology and Pathophysiology, Faculty of Veterinary Medicine, University of Lubumbashi P.O. Box 1825 Lubumbashi, D.R. CONGO

\*Corresponding Author E-mail: bourg.2013@gmail.com

Received: 5.01.2018 | Revised: 7.02.2018 | Accepted: 11.02.2018

#### ABSTRACT

Packed cell volume, hemoglobin and iron rate were obtened from 54 whole blood samples, hemolysed whole blood and serum of 9 marternal-placental-factal complex (MPFC) of goats from Lubumbashi.

Packed cell volume obtained after centrifugation and hemoglobin rate by Sahli method were respectively:  $40,89\pm3,8\%$  and  $7,56\pm1,05g$ % in the maternal blood,  $33,14\pm5,75\%$  and  $6,69\pm0,66g$ % in the placenta blood and  $30,22\pm3,46\%$  and  $6,53\pm0,75g\%$  in the facture blood.

The serum and hemolysed whole blood iron rate values obtained from colorimetric test by spectrophotometer, were respectively,  $86,47 \pm 9,13 \mu mol/l$  and  $7,16 \pm 9,88 \mu mol/l$  in the maternal blood,  $21,68 \pm 5,01 \mu mol/l$  and  $0,54 \pm 0,52 \mu mol/l$  in the placenta blood and  $29,25 \pm 12,37 \mu mol/l$  and  $2,32 \pm 4,19 \mu mol/l$  in the fætus bood.

The globular iron rate being the difference between the serum and the total iron were respectively 79, 29  $\pm$ 14, 58 $\mu$ mol/l, 21, 13  $\pm$ 4, 98 $\mu$ mol/l and 26, 92 $\pm$ 14, 47 $\mu$ mol/l.

Statistically, in general, the maternal parameters were significantly higher than those in placenta and fœtus.

If placenta and factal hemoglobin is comparable, and factal packed cell volume low, all the foetal iron rates are significantly higher than placenta iron rates.

By considering the whole iron in CMPF, in the pregnant, the iron rate is 62, 9% in the maternal compartment, 15, 7% in the placenta and 21,2% in the factal compartment.

Hemoglobin rate obtained locally, being anemic type, the supplement with iron to goats during pregnancy is important.

Key words: Packed cell volume, Hemoglobin, Iron rate, Maternal-placental-factal complex.

#### RESUME

L'hématocrite, le taux d'hémoglobine et les teneurs martiales étaient obtenus à partir de 54 échantillons du sang total, sang total hémolysé et sérum de 9 complexes maternello-placento-fœtal (CMPF) des chèvres à Lubumbashi.

L'hématocrite dosé par la microcentrifugeuse et le taux d'hémoglobine par la méthode de Sahli étaient respectivement de  $40,89\pm 3,8\%$  et  $7,56\pm 1,05g$  % chez les mères,  $33,14\pm 5,75\%$  et  $6,69\pm 0,66g$  % dans les placentas et de  $30,22\pm 3,46\%$  et  $6,53\pm 0,75g\%$  chez leurs fætus.

Les teneurs martiales du sang total hémolysé et du sérum dosées par la méthode colorimétrique à l'aide de spectrophotomètre étaient respectivement de  $86,47 \pm 9,13 \mu mol/l$  et  $7,16\pm9,88 \mu mol/l$  chez la mère, de  $21,68 \pm 5,01 \mu mol/l$  et  $0,54\pm0,52 \mu mol/l$  dans les placentas et de  $29,25\pm12,37 \mu mol/l$  et  $2,32\pm4,19 \mu mol/l$  pour les fœtus.

Le fer globulaire, écart entre fer sanguin total et fer sérique était chez les mères, placentas et fætus respectivement de 79,29  $\pm$ 14,58µmol/l, 21,13  $\pm$ 4,98µmol/l et 26,92 $\pm$ 14,47µmol/l.

Statistiquement, d'une manière globale, les paramètres maternels étaient significativement supérieurs à ceux du placenta et fœtus.

Bien que l'hémoglobine placentaire et fœtale fût comparable, l'hématocrite fœtal faible, toutes les teneurs martiales fœtales étaient significativement supérieures aux teneurs martiales placentaires.

En considérant le fer total du complexe, chez une gestante, la teneur du fer est de 62,9% dans le compartiment maternel, de 15,7% dans le placenta et de 21,2% dans le compartiment fœtal.

Le taux d'hémoglobine obtenu localement étant du type anémique, la supplémentation en fer des chèvres pendant la gestation est nécessaire.

Mots clés: hématocrite, hémoglobine, teneur martiale, complexe maternello-placento-fœtal.

# INTRODUCTION

The goat is a family animal. It is breed for the production of meat, of milk but also as solution to the social problems<sup>11</sup>.

breeding The goat is economically advantageous because of the rusticity. prolificity and its nutrition simplicity<sup>7</sup>. His economical profits and low feed cost is mainly due to his prolificity, the goat being known for twin and nontwin gestation<sup>12</sup>. During his metabolites, energertic gestation, water, susbtrats and minerals such as iron are transfered to the fœtus via the placenta which is known as synthesis, catabolism, and storage organ<sup>1, 8</sup>.

According to Dennis and al.<sup>3</sup>, iron is a part of red blood cells, thus packed cell volume and hemoglobin depend on it. Packed cell volume values varying between 20 and 30 % and hemoglobin between 8 and 13,5g % have been given by Siliart and Nguyen<sup>14</sup>. So far, nothing has been said about placental and foetal hemoglobin and packed cell volume.

As far as serum and globular iron rate and whole blood are concerned, what we read in litterature seems to deal with other species such as cattle<sup>5</sup>, sheep<sup>2</sup>, horse<sup>13</sup>, but still nothing dealing with the above values in goat placenta and fœtus. We therefore wanted to know whether these values could change in the merterno-placento-fœtal complex.

The interest of this work is to calculate values of packed cell volume, hemoglobin rate and iron rate in the maternello-placento-fœtal complex. Our hypothesis is that high variations of the above values are expected in the complex

The aim of this work is to determine packed cell volume, hemoglobin and iron rate values in the whole blood, hemolysed whole blood, the serum and in the red blood cells of the maternello-placento-fœtal complex of the goats living in tropical regions.

# Area, animals, materials and methods

Area: this reseach has been done from blood samples of goats slaughterd in Mzee Kabila market in lubumbashi tropical region in Democratic Republic of the Congo. The dosage of packed cell volume and hemoblobin has been done in the laboratory of physiology whereas the dosage of iron in the laboratory of biochemestry service of the Faculty of Veterinary Medecine of lubumbashi university.

Animals: for the work to be done, we used whole blood collected with anticoagulant (EDTA) and sera from 9 maternello-placentofœtal complexes from pregnant goats slaughterd in Mzee Kabila market.

Materials : 27 samples (9 for the pregnant goats, 9 for placenta and 9 for their foetus) from whole blood collected with anticoagulant, where used to determine packed cell volume value, hemoglobin and iron rate values after hemolysis. Serum samples of the same complexes served to determine the serum iron rates. Equipements like servinges, knifes, collection tubes, refrigerator, centrifuger and EDTA as anticoagulant have been used for blood collection, serum extraction, hemolysis and sample Storage.

Sahli hemoglobinometer, his adnexa and HCl(0,1N) was used for getting hemoglobin concentration whereas pasteurs's pipette and microcentrifuger were used for determining hematocrit. Iron concentration was calculated by using the iron kit recommanded by the belgian laboratory Cypress Diagnostic.

# MATERIAL AND METHODS

Animals choice: the 9 maternello-placentofœtal complexes have been picked from pregnant slaughtered goat whose fœtus was at least 15 cm long.

**Cite this article:** Tshiasuma, K.A., Kasereka, S.B., Kaluendi, C.M. and Ngoie, K., Evaluation and Comparison of Hematocrit, Hemoglobin and Iron Rate in Maternello-Placento-Fœtal Goats Complex at Lubumbashi in Tropical Area, *Int. J. Pure App. Biosci.* **6**(1): 44-51 (2018). doi: http://dx.doi.org/10.18782/2320-7051.6147

Int. J. Pure App. Biosci. 6 (1): 44-51 (2018)

**Blood collection**: 54 blood samples have been collected by puncturing jugular and placenta big veines. 4 to 5 ml from 8 to 10 of fresh blood, have been put in collection tubes with and without anticoagulant. 2 ml of serum have been extracted from blood without EDTA after centrifugation. Hemoglobin concentration and hematocrit have been determined from EDTA free blood.

Ironconcentrationdetermination:Hemolysed blood by machanic action, freezing<br/>and unfreezing and serum have been used for<br/>determining serum and total iron<br/>concentrations through spectrophotomrter by

using ferrosine calometric method recommended Cypress Diagnostic by laboratory. Globular iron concentration is the difference between serum iron concentration and total iron concentration. Statistic evalution : we calculated standard deviations, averages, variances by classic methods; student test allowed us to compare averages and 2010 Excel software version helped establish the correlation between studied parameters. Differences have been declared significant at 0,05% threshold. Iron

conversion factor in µmol/l is 0,179.

RESULTS

Results have been summed up in the 5 following tables

Table I: hematocrit (%), hemoglobin concentration (g %), serum, total and globular iron concentrations (µg/dl) of mothers (pregnant goats)

| (µg/u) of moments (pregnant gouts) |            |            |             |              |               |  |  |
|------------------------------------|------------|------------|-------------|--------------|---------------|--|--|
| No                                 | Hematocrit | Hemoglobin | Serum iron  | Total iron   | Globular iron |  |  |
| 1                                  | 35         | 7          | 79,37       | 533,33       | 453,96        |  |  |
| 2                                  | 38         | 7,8        | 6,05        | 400,61       | 394,61        |  |  |
| 3                                  | 40         | 8          | 1,79        | 493,20       | 491,41        |  |  |
| 4                                  | 45         | 7,4        | 32,28       | 481,48       | 449,2         |  |  |
| 5                                  | 40         | 7          | 44,17       | 557,03       | 412,86        |  |  |
| 6                                  | 45         | 10         | 16,14       | 461,81       | 445,67        |  |  |
| 7                                  | 40         | 7,6        | 4,48        | 475,30       | 470,82        |  |  |
| 8                                  | 40         | 6,4        | 5,38        | 523,45       | 518,07        |  |  |
| 9                                  |            |            | 170,85      | 421,60       | 250,75        |  |  |
| Ν                                  | 45         | 6,8        | 9           | 9            | 9             |  |  |
| $\mathbf{M} \pm \mathbf{S}$        | 9          | 9          | 40,06±55,22 | 483,09±51,02 | 443,04±81,47  |  |  |
| Iron (µmol/l)                      | 40,89±3,48 | 7,56±1,05  | 7,17±9,88   | 86,47±9,13   | 79,29±14,58   |  |  |
| %                                  |            |            | 8,2         | 100          | 91,6          |  |  |

Legend: N=number, M=average, S= Standard deviation

The analysing results from this table it shows that hematocrit is  $40,89\pm3,48\%$  and hemoglobin  $7,56\pm1,05g\%$  for the mothers (pregnant goats ) having higher iron level in red blood cells ( 91,6%) than they do in the serum (8,2%)

### Int. J. Pure App. Biosci. 6 (1): 44-51 (2018)

| Table II: hematocrit (%), hemoglobin concentration (g %), and serum, total and globular iron |
|----------------------------------------------------------------------------------------------|
| concentrations (µg/dl) of placentas                                                          |

| No                  | Hematocrit      | Hemoglobin     | Serum iron             | Total iron                 | Globular iron              |
|---------------------|-----------------|----------------|------------------------|----------------------------|----------------------------|
| 1                   | 34              | 7              | 2,34                   | 175,43                     | 173,09                     |
| 2                   | 40              | 8              | 0,42                   | 84,79                      | 84,37                      |
| 3                   | 35              | 7              | 5,00                   | 100                        | 95                         |
| 4                   | 21              | 7              | 0,42                   | 112,88                     | 112,46                     |
| 5                   | 35              | 6              | 1,27                   | 98,24                      | 96,97                      |
| 6                   | 31              | 6,6            | 2,98                   | 142,10                     | 139,12                     |
| 7                   | 40              | 6,2            | 9,90                   | 122,80                     | 112,9                      |
| 8                   | 30              | 6,6            | 2,55                   | 111,69                     | 109,14                     |
| 9<br>N              | 32              | 5,8            | 2,55<br>9              | 242,36<br><b>9</b>         | 139,81<br><b>9</b>         |
| Met S<br>Fer µmol/l | 9<br>33,14±5,75 | 9<br>6,69±0,66 | 3,05±2,93<br>0,54±0,52 | 121,14±28,04<br>21,68±5,01 | 118,10±27,83<br>21,13±4,98 |
| %                   |                 |                | 2,5                    | 100                        | 97,5                       |

After studying this table we notice that  $33,14\pm5,75\%$  is the average value of hematocrit and hemoglobin is  $6,69\pm0,66g\%$ , and finally the iron level in the red blood cells is higher (soit 97,5%) than it is in placenta serum (2,5%, almost absent).

| Table III: hematocrit (%), hemoglobin concentration (g %), and serum, total and globular iron |
|-----------------------------------------------------------------------------------------------|
| concentrations (µg/dl) of foetuses                                                            |

| No                                     | Hematocrit            | Hemoglobin          | Serum iron                                   | Total iron                                        | Globular iron                                      |
|----------------------------------------|-----------------------|---------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| 1                                      | 27                    | 6                   | 72,31                                        | 93,56                                             | 21 ,25                                             |
| 2                                      | 24                    | 7                   | 1,59                                         | 92,98                                             | 91,39                                              |
| 3                                      | 30                    | 7                   | 6,07                                         | 277,77                                            | 271,70                                             |
| 4                                      | 35                    | 7                   | 22,47                                        | 167,83                                            | 145,36                                             |
| 5                                      | 31                    | 6                   | 0 ,42                                        | 225,14                                            | 224,72                                             |
| 6                                      | 35                    | 8                   | 11,82                                        | 225,75                                            | 113,93                                             |
| 7                                      | 30                    | 6                   | 1,17                                         | 117 ,54                                           | 116,37                                             |
| 8                                      | 30                    | 5,8                 | 0,74                                         | 126,07                                            | 125,33                                             |
| 9<br>N<br>M et S<br>Fer en µmol/I<br>% | 30<br>9<br>30,22±3,46 | 6<br>9<br>6,53±0,75 | 0,42<br>9<br>13,00±23,44<br>2,32±4,19<br>7,9 | 244,44<br>9<br>163,45±69,13<br>29,25±12,37<br>100 | 244,08<br>9<br>150,45±80,86<br>26,92±14,47<br>92,1 |

Analysis of the above table shows 30,  $22\pm3$ , 46% as hematocrit value and an hemoglobin value of 6,  $53\pm0.75$  g%. It clearly reveals that iron concentration is much higher (soit 92, 1%) in red blood cells than in foetuses sera (soit 7, 9%).

#### Int. J. Pure App. Biosci. 6 (1): 44-51 (2018)

| Table IV Hematocrit general averages (%), hemoglobin concentration (g%), Hemolysed blood iron, |
|------------------------------------------------------------------------------------------------|
| serum iron and globular iron ( <i>umol/l</i> )                                                 |

|            | e                        | siobular from (am                                                   |                                                                                                           |                                                                                                                               |
|------------|--------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Hematocrit | Hemoglobin               | Total iron                                                          | Serum iron                                                                                                | Globular iron                                                                                                                 |
| 40,89±3,48 | 7,56±1,05                | 86,47±9,13                                                          | 7,17±9,88                                                                                                 | 79,29±14,58                                                                                                                   |
| 33,14±5,75 | 6,69±0,66                | 21,68±5,01                                                          | 0,54±52                                                                                                   | 21,13±4,98                                                                                                                    |
| 30,22±3,46 | 6,53±0,75                | 29,25±12,37                                                         | 2,32±4,19                                                                                                 | 26,92±14,47                                                                                                                   |
|            | 40,89±3,48<br>33,14±5,75 | 40,89±3,48         7,56±1,05           33,14±5,75         6,69±0,66 | 40,89±3,48         7,56±1,05         86,47±9,13           33,14±5,75         6,69±0,66         21,68±5,01 | 40,89±3,48       7,56±1,05       86,47±9,13       7,17±9,88         33,14±5,75       6,69±0,66       21,68±5,01       0,54±52 |

The above table is showing how much higher the maternal values are than placentas and foetuses. Though placenta hemoglobin level is as same as fœtus, this table outlines the superiority of both placenta hemotacrit and iron concentration over fœtus.

| Categories        | Hct/SFe | Hb/SFe | SFe/GFe | SFe/SFe | Hct/Hct | Hb/Hb | Hct/Ht |
|-------------------|---------|--------|---------|---------|---------|-------|--------|
| Mothers           | 0,22    | - 0,36 | - 0,84  |         |         |       | 0,34   |
| Placentas         | 0,46    | - 0,35 | 0,02    |         |         |       | 0,09   |
| Fœtuses           | - 0,11  | - 0,11 | - 0,07  |         |         |       | 0,38   |
| Mothers/placentas |         |        |         | 0,22    | - 0,59  | 0,20  |        |
| Mothers/fœtuses   |         |        |         | 0,21    | 0,78    | 0,90  |        |
| Placentas/fœtuses |         |        |         | 0,23    | 0,71    | 0,44  |        |

Legend : Hb =hemoglobin, Hct=Hematocrit, SFe=serum iron, GFe=Globular Iron, maHbt=maternal Hemoglobin, FoetHb=feetal Hemoglobin, matSFe=maternal serum iron, foetSFe= fcetal serum Iron

The examination of this table shows that the correlation is positive between maternal and fætal hemoglobin, and negative between serum and maternal globular iron, but averagely positive between maternal and fœtal hematocrit, placental and fœtal hematocrit. It is negative between maternal and placental hematocrit. Finally this table reveals that the correlation is weakly negative or positive, almost null betwen all the studied parameters.

#### DISCUSSION

This discussion is about hematocrit. hemoglobin concentration, and iron concentration in the whole blood, hemolysed whole blood, serum and red blood cells of 9 maternello-placento-fœtal complexes of pregnant slaughterd goats in Mzee Kabila market.

#### HEMATOCRIT AND HEMOGLOBIN

Displayed results in table I, II, III, IV outline the folowing average values about hematocrit and hemoglobin level in the maternelloplacento-feetal complex : 40,89±3,48% and  $7,56 \pm 1,05g$  % in the pregnant goat,  $33,14 \pm$ 5,75 % et 6,69  $\pm$  0,66g % in the placenta and  $30,22 \pm 3,46\%$  et de  $6,53 \pm 0,74$  g % for the

fœtus. Statistical comparison shows that hematocrit and hemoglobin levels are higher in the mothers than they are in placentas and foestuses, and placenta hematocrit is higher than fœtus' though they hemoglobin concentration are comparable.

following of The local values hematocrit : 40,89±3,48% in the mothers,  $33,14 \pm 5,75$  % in the placenta and  $30,22 \pm$ 3,46% for foctus are higher than  $27,5\pm0,7\%$ , as average value but less than  $59,4\pm6\%$ , average value found by Ndoutamia and Ganda<sup>9</sup> in the goats in Tchad.

As far the local hemoglobin levels are concerned,  $7,56 \pm 1,05g$  % in the mothers,  $6,69 \pm 0,669$  % in the placenta and  $6,53 \pm$ 0,74 g % for foctuses are far less than  $9\pm1,1g\%$ and 12±1,3g% found in goats by Ndoutamia and Ganda<sup>9</sup>. Their are also inferior to 10 à 11g %, value found by Siliart and Nguyen<sup>14</sup>.

The superiority of maternal hemoglobin and hematocrit, could on one hand be linked to intense erythropoiesis and hemoglobinogenesis for meeting the mother and foctus oxygen needs, on the other to maturity of the mother's bone marrow, number and size of fœtal red blood cells, B12 vitamin,

ISSN: 2320 - 7051

## Tshiasuma *et al*

folic acid levels and erythropoietin levels in the mother and fo $exture{s}^4$ .

Significantly high hematocrit value in the placenta could be due to oxygen storage role of this organ for the fœtus needs. The anemia type hemglobin concentration, comparable between placenta and fœtus is presumably due the weak erythropoiesis capacity of the fœtus on one hand and to iron deficiency anemia in the mother.

# **IRON CONCENTRATIONS**

Results from table I, II, III, IV show for hemolysed whole blood, serum and red blood cells of MPFC, the following respective values : 86,47±9,13µmol/l, de  $7,17\pm9.88$  $\mu$ mol/l et de 79,29 $\pm$ 14,58  $\mu$ mol/l for mothers, 21,68±5,01µmol/l, de 0,54±0,52 µmol/l et de  $21,13 \pm 4,98 \ \mu mol/l$  for placentas. 29,25±12,37µmol/l, 2,32±4,19 µmol/l and  $26,92 \pm 14,47 \ \mu mol/l$  for fœtuses of. Considering 137.4 µmol/l as the average of MPFC, iron concentrations are value 62,9%, 15,7%, 21,2% respectively in the maternal, placental and fœtal compartments.

Statistical comparison shows that the iron concentration in mothers are higher than in placentas whose concentration are superior to foetuses'.

Being unable to compare our data with other's as far as irons concentrations are concerned, we can notice that  $7,17\pm9,88$ ,  $0,54\pm0,52$  and  $2,32\pm4,19$  µmol/l respectively iron concentration in the mothers, placentas and foetuses, are inferior to iron serum level of pregnant sows ( $16,61\pm0,96$  µmol/l), large whight ( $13,08\pm1,80$ ) µmol/l and local breed piglets (8,80 µmol/l) observerd by Ngoie et al (2016).

# **IRON RATE**

The results presented in tables I, II and III and IV show that the iron rate of the hemolysed whole blood, serum and red blood cells of CMPF are on average respectively  $86,47 \pm 9.13 \mu mol/1$ ,  $7.17 \pm 9.88 \mu mol/1$ , and  $79,29 \pm 14.58 \mu mol/1$  in the mothers,  $21.68 \pm 5.01 \mu mol/1$ ,  $0.54 \pm 0.52 \mu mol/$ , and  $21.13 \pm 4.98 \mu mol/1$  in placenta and  $29.25 \pm 12.37 \mu mol/1$ ,  $2.32 \pm 4.19 \mu mol/1$ , and  $26.92 \pm 14.47 \mu mol/1$  for foetuses. By considering the total mean

value of the MPFC of 137.4  $\mu$ mol/l, the iron rate are in the range of 62.9% in the maternal compartment, 15.7% in the placental compartment and 21.2% in the foetal compartment.

The literature at our disposal does not offer us the opportunities to find international reference iron values and to establish comparison with locally obtained levels on the goat. However, the average serum iron levels of 7.17  $\pm$  9.88 for mothers, 0.54  $\pm$  0.52  $\mu$ mol/L for placenta and 2.32  $\pm$  4.19  $\mu$ mol/l for foetuses were below the average serum iron levels of 16.61  $\pm$  0.96  $\mu$ mol/l, 13 08  $\pm$  1.80 umol/l, and 8.80 umol/l, respectively, on pregnant sows, large white piglets, and common-breed piglets by Ngoie et al.<sup>10</sup>. They are far below the minimum values of 12.53 µmol/l observed in cattle by Gustav<sup>5</sup>, of 17.9 µmol/l observed by Blood and Henderson<sup>2</sup> in sheep, 40.50 µmol/l in equines by Rajakoski et al.<sup>13</sup>, 8.9 µmol/l In humans by Dennis et al.<sup>3</sup>. Our total values found in the Goat Maternelloplacento-fœtal complex are far superior to 20  $24 \pm 1.50 \ \mu mol/l, 18, 58 \pm 2.14 \ \mu mol/l, and$  $15.12 \pm 1.68 \ \mu mol/l$  total iron advanced by Ngoie et al.<sup>10</sup> in sows Pregnant, large white piglets and common breed piglets.

The significant superiority of maternal iron levels on placenta and foetus would be due to the dietary intake and mobilization of hepatic ferritiniques reserves by the mother to combat the physiological disasters of Iron deficiency anemia already present.

The superiority of maternal globular levels observed would be related to the superiority of maternal hematocrit and hemoglobin, by intense erythropoiesis and Hemoglobin fabrication to meet the double maternal needs and Foetal.

The superiority of all foetal iron levels in relation to those of the placentas, testifies that the placenta is a place of transfer for certain nutrients and storage for other<sup>8, 10</sup>.

In the mothers, for a total iron rate of  $86.47\mu$ mol/l, the serum iron represents only 8.2% and globular iron 91.7%. This distribution shows that maternal serum iron is

ISSN: 2320 - 7051

intensely mobilized and directed towards foetal needs, the foetus being a priority $^{8}$ .

For the foetuses, with a total iron rate of 29.25  $\mu$ mol/l, the serum iron corresponds to 7.9% against 92.1% in red blood cells, whereas at placental level, for overall blood iron rate of 21.68, the serum iron corresponds to 2.5% and globular iron Corresponds to 97.5%, this placental serum iron confirms that the placenta is an iron transitory organ for foetal needs.

# **CORRELATION**

The examination of table V shows that the correlation is positive excellently or 0.90 between maternal and foetal hemoglobin, it is excellently negative or-0.84 between the serum and globular maternal iron, but moderately positive or 0.78 and 0.71 Between maternal and foetal hematocrit and Between placental and foetal hematocrit, respectively; It is also moderately negative or-0.59 between maternal and placental hematocrit. It also reveals that the correlation is weakly positive or negative, almost zero between the other parameters studied.

This positive excellently correlation between maternal hemoglobin and foetal hemoglobin or 0.90 to be explained by the fact that the need for foetal oxygenation is satisfied with the maternal hemoglobin level. The need for foetal oxygenation is both a function of the degree of oxygen transfer via maternal hemoglobin<sup>8</sup>.

The higher negative trend of the correlation of either-0.84 between serum and globular iron levels in the mother would be explained by the fact that maternal serum iron is transferred to the foetus for its needs via the placenta, and is also directed towards the maternal needs. It is established that foetal iron is exclusively maternal in Origin and is transferred by active means<sup>6</sup>, whereas maternal serum iron is of food, hemolytic or mobilization of hepatic iron for the physiological needs of the mother<sup>10</sup>.

The moderately positive correlations of 0.78 between maternal and foetal hematocrit as well as 0.71 between placental and foetal hematocrit would be explained by the fact that the foetal oxygenation needs are met by the mother, and thus the increase Oxygen-foetal needs entrains the increase in its hematocrit and therefore the hematocrit of its mother and placenta. The average negative correlation of 0.59 between maternal and placental hematocrit was due to the age, size, and needs of the foetus. As the fetus is a priority, the higher it increases in volume, its physiological needs also increase to the detriment of the mother.

# CONCLUSION

The determination of hematocrit, hemoglobin, and iron rate in the Maternello-placental-fetal goat complex in Lubumbashi showed that all of these parameters are significantly higher in the mother compared to the parameters placental and foetal correspondents; And that placental hematocrit is also higher than that of hemoglobin the foetus. their level is comparable while all foetal iron levels remain significantly higher than the corresponding placental values.

Compared to the different relationships, the correlation is positive excellently or 0.90 between maternal and foetal hemoglobin, it is negative excellently either-0.84 between the serum and globular maternal iron, but moderately positive or 0.78 and 0.71 between maternal and foetal hematocrit and between placental and foetal hematocrit, respectively, it is also moderately negative or-0.59 between maternal and placental hematocrit. But it is weakly positive or negative, almost zero between the other parameters studied.

#### Thanks

The authors thank the veterinary clinics of Lubumbashi, the assistants of the laboratory of normal and pathological biochemistry of the University of Lubumbashi, as well as statisticians and computer scientists for their contributions to the realization of this work.

# REFERENCES

 Barone R.: Anatomie comparée des mammifères domestiques, splanchnologie 2, tome 4, Vigot-frères, Paris, (2001).

Int. J. Pure App. Biosci. 6 (1): 44-51 (2018)

- 44-51 (2018) ISSN: 2320 7051 ruminants du Tchad. Revue Méd. Vét., **156(4):** 202-206 (2005).
- Vétérinaire, Vigot Edition, Paris, (1976).
  3. Dennis L.; Kasper M.; Eugen B.; Anthonys F., Danl L.; Jameson J.L.; Stephen L.H. : Principe de Médecine interne. Médecine-science Flammarion,

2. Blood D.C. et Henderson J.A. : Médecine

- Paris, (2006).
  4. François M. : Nutrition minérale des ruminants, Edition quae, Versailles cedex, (2010).
- Gustave R. : examen clinique des bovins, les éditions du point vétérinaire, Alfort, (1979).
- Jarrige R.; Ruckbush Y.; Dermarquilly C.; Farce M.H.; Journet M.: Nutrition des ruminants domestiques. Ingestion et digestion. INRA Paris, (1995).
- Lunumbi O.J.B.H.: Recherche de la formule barymetrique adaptable à la chèvre africaine « capra hircus L.» de 0 à 12 mois, à Lubumbashi et ses environs (RDC). Thèse d'Agrégation en Médecine Vétérinaire UNILU Lubumbashi, (2008).
- 8. Marpeau L.; Lansac J.; Teumier F.; Nguzen F.: traité d'obstétrique. Ed. elsevier Masson, (2010).
- 9. Ndoutamia G. et Nganda K.: Détermination des paramètres hématologiques et biochimiques des petits

- Ngoie K.; Baraka K.K.; Kasereka S.B.; Kaluendi C.M.; Kaputo M.: Evaluation et comparaison des teneurs martiales dans le sang total hémolysé, sérum et globules rouges chez les truies gestantes et porcelets en élevage tropical. Int. Pure App. Biosci. 4(3): 216-222 (2016).
- Ngona I.A.; Beduin J.M.; Khang Mate A.B.F.; Hanzen C. : Etude descriptive de caractéristiques morphologiques et génitales de la chèvre de Lubumbashi en République démocratique du Congo. Revue d'élevage et de médecine vétérinaire des pays tropicaux, 65 : 75-79 (2012).
- Ouedraogo G.A.; Barry M.; Sawadogo G.J.: Variation des profils métaboliques lors de gestation à terme et d'avortement chez des chèvres mossis au Burkina Faso. Revue Méd. Vét. 159(2): 112-118 (2008).
- Rajakoski E. Mero M.; Maija V.: Serum and total iron beding capacity of the serum in trotter's volume 4, issue 4, pages 223-224 (1972).
- 14. Siliart B. et Nguyen F.: Le memento biologie du vétérinaire. Les éditions de points vétérinaires cedex-France, (2007).